skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Miller, Benjamin_Harvey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mechanoresponsive, soft, photonic materials with tunable structural coloration represent a class of materials that have potential benefits for a wide range of applications. While many lab‐scale fabrication approaches afford control over the nano‐ and microscale morphology of these materials, upscaling their manufacture remains a challenge. Herein, a scalable fabrication concept is proposed that centers on the modular assembly of color‐changing materials from microscale building blocks. The building blocks consist of hydrogel‐based spherical photonic crystals. They are formed through a water‐in‐oil emulsification of nanoscale colloidal particles suspended in the aqueous phase. Once formed, the photonic crystal microspheres are then assembled into macroscale photonic materials, such as stretchable fibers or sheets. The resulting materials respond to a mechanical deformation with a reversible, dynamic change in color. Fabricated via a scalable, modular‐assembly approach, these mechanoresponsive photonic fibers and sheets, in turn, form a valuable building block for sensing systems or visual communication in healthcare, architecture, and consumer product design. 
    more » « less